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Purpose. The usefulness of several modeliing methods were exam-
ined in the development of a population pharmacokinetics model for
cefepime.

Methods. The analysis was done in six steps: (1) exploratory data
analysis to examine distributions and correlations among covariates,
(2) determination of a basic pharmacokinetic model using the NON-
MEM program and obtaining Bayesian individual parameter esti-
mates, (3) examination of the distribution of parameter estimates, (4)
multiple linear regression (MLR) with case deletion diagnostics,
generalized additive modelling (GAM), and tree-based modelling
(TBM) for the selection of covariates and revealing structure in the
data, (5) final NONMEM modelling to determine the population PK
model, and (6) the evaluation of final parameter estimates.
Results. An examination of the distribution of individual clearance
(CL) estimates suggested bimodality. Thus, the mixture model fea-
ture in NONMEM was used for the separation of subpopulations.
MLR and GAM selected creatinine clearance (CRCL) and age,
while TBM selected both of these covariates and weight as predic-
tors of CL. The final NONMEM model for CL included only a linear
relationship with CRCL. However, two subpopulations were iden-
tified that differed in slope and intercept.

Conclusions. The findings suggest that using informative graphical
and statistical techniques enhance the understanding of the data
structure and lead to an efficient analysis of the data.

KEY WORDS: graphics; MLR; GAM; TBM; diagnostics; jackknife;
population pharmacokinetics; subpopulations.

INTRODUCTION

Finding a model that adequately describes a given pop-
ulation pharmacokinetic data can be a complicated and time
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consuming task. It is not enough to find the covariates that
are significantly associated with the pharmacokinetic param-
eters. The determination of the form of the relationship be-
tween covariates and parameters is also of importance.

A well chosen graph or graphical technique is a very
powerful tool that can be used to obtain information about
the structure of the data. Graphical techniques enable one to
explore data thoroughly, to look for patterns and relation-
ships, to confirm or disprove the expected, and to discover
new phenomena. Data analysis procedures such as NON-
MEM (1) are based explicitly on assumptions about the data,
and the validity of analyses depends upon the validity of the
assumptions. Graphical displays provide powerful diagnos-
tic tools for confirming assumptions, or when the assump-
tions are not met, for suggesting corrective actions. Without
such tools, confirmation of assumptions can only be re-
placed by hope.

The eye-brain system is the most sophisticated informa-
tion processor ever known to man, and through graphical
displays this system can be put to good use. In this paper we
discuss the modelling of population pharmacokinetics data
using a combination of graphical displays and statistical
techniques. In addition, population parameter estimates
were evaluated using the jackknife technique in conjunction
with a comparison of the NONMEM population parameter
estimates with those obtained using the standard two stage
approach.

METHODS

Data

Data were pooled from studies involving healthy sub-
jects, cystic fibrosis patients, renal impaired patients, and
patients with liver impairment which were submitted as part
of the Bristol-Myers Squibb new drug application (NDA)
package for cefepime, a cephalosporin antiinfective agent.
1000 or 2000 mg single or multiple doses of the drug were
administered as either a 5 or 30 min intravenous (IV) infu-
sion. A validated high performance liquid chromatographic
assay with intra-assay and inter-day coefficient of variation
of less than 9% was used to determine cefepime in plasma
samples (2).

A total of 138 individuals comprising both sexes with
age ranging from 5 to 81 years and weighing between 17 and
96 kg supplied 2084 plasma concentrations. The number of
samples/subject ranged from 7 to 20, and there were 45 fe-
males. Demographic data collected on each individual (pa-
tient or normal healthy subject) included age, weight, creat-
inine clearance, and medical status (major disease state, if
any). Classification of hepatic failure was based on clinical
diagnosis and abnormal liver function tests (other than trans-
aminases alone). The degree of renal dysfunction was as-
sessed using routine serum creatinine measurements to cal-
culate creatine clearance (CRCL) with the Cockroft and
Gault equation (3) for adults and the Dechaux et al. equation
(4) for children under 20 years.

Twenty three (16.5%) had a calculated CRCL < 3 L/h
(<50 ml/min). Of these, 14 had end stage renal disease
(ESRD) with a CRCL less than 2.3 L/h (30 ml/min). Eight of
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these received hemodialysis, while the others were undia-
lysed. There was no concomitant drug therapy. Each subject
was sampled intensively, with blood samples taken predose
and at specified time intervals.

Data Analysis

The methods used in the analysis of the data emphasize
the combination of statistical techniques and graphical dis-
plays to discern the structure of the multivariable data. A
stepwise approach was used in the analysis of the data: (1)
exploratory data analysis to examine distributions and cor-
relations between covariates, (2) determination of a basic
pharmacokinetic model using the NONMEM program and
obtaining Bayesian individual parameter estimates, (3) ex-
amination of distributions of estimates for parameters, (4)
multiple linear regression (MLR) with case deletion diagnos-
tics, generalized additive modelling (GAM), and tree-based
modelling (TBM) for the selection of covariates and reveal-
ing structure in the data, (5) final NONMEM modelling to
determine the population pharmacokinetic (PPK) model, and
(6) evaluation of final PPK estimates using the jackknife
technique.

Essentially, model building using steps (2), part of (4),
and (5) was originally suggested by Maitre (5), subsequently
elaborated upon by Mandema et al. (6), and Davidian and
Gallant (7), and later used, for example, by Burtin et al. (8)
in published analyses.

Step 1: Examination of Distributions and Correlations

The sampling distribution of each covariate was exam-
ined graphically by means of histograms. To reduce dimen-
sionality of the covariate vector, graphic inspection of bi-
variate scatterplots and pairwise analysis based on the cal-
culation of correlation coefficients were used (9).

Step 2: Determination of Basic Pharmacokinetic Model

The cefepime concentration-time data were fit to a two
compartment open model parameterized in terms of CL, V1,
Q, and V2 with input and elimination into and from the cen-
tral compartment using NONMEM (Version IV, Level 2 of
NONMEM and PREDPP version 3, level 1 (1)). Interindi-
vidual variability in CL was initially modeled using an expo-
nential error model as shown in equation (1).

CL; = CL(exp v°");  m=" iid. ~ NOwcy) (1)

where CL,; is the hypothetical true total body clearance (CL)
for the jth individual as predicted by the regression model.
CL is the typical population value of CL; the njCL represents
the persistent difference between the jth individual’s CL
value and that predicted by the regression model; v,“"s are
independent, identically distributed random variables. Inter-
individual variability in V1, Q, and V2 were similarly mod-
elled. The exponential error model for interindividual vari-
ability was significantly better than the additive error model
and was used for all subsequent analyses.

The residual intraindividual variability represents un-
certainty in the relationship between the plasma concentra-
tions predicted by the model and the observed concentra-
tions. This uncertainty results from model misspecification,
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assay variability, etc. It was initially modelled using the pro-
portional error model as shown in equation (2).

Ci = Couii(1 + €); €; 1.i.d. ~ N(0,0?%) )
where C;; is the ith observed concentration for the jth indi-
vidual; C,,; is the ith concentration predicted by the model at
the ith observation time for the jth individual. ¢; are inde-
pendent, identically distributed statistical errors of mean 0
and variance equal ¢°.

A combination of additive and constant coefficient of
variation error models (eq. (3)) were found to describe the

error in the data better than the proportional error model.

Cy=Cpyj + C"es + & 3)

In determining the basic PK model no covariance was
assumed between elements of v at this stage. This was to
ensure that each covariate had the opportunity to appear to
be related to each v. With the fixed and random effects
models chosen, empirical Bayes estimates of PK parameters
were subsequently obtained using the POSTHOC option
within the NONMEM program (1). The parameter estimates
obtained from the initial analysis using the regression models
typified by equations (1 & 3) were taken to be the population
priors. With the empirical Bayes estimates of individual PK
parameters obtained, the distributions of these parameter
estimates and relationships between PK parameters and co-

variates were examined in subsequent steps.

Step 3: Examination of Distributions of
Parameter Estimates

Density and normal scores plots were used to examine
the sampling distributions of parameter estimates. The
“‘straightness’ of probability plots were measured using the
modified Shapiro-Wilk test (10) which is based on the cor-
relation coefficient. A very high correlation is consistent
with normality.

Step 4: Selection of Covariates

Exploratory data analysis was performed on the empir-
ical Bayesian parameter estimates from Step 2 treated as
‘‘data’” to examine distributions, shapes, and relationships
between covariates and individual PK parameter estimates.

MLR with Case Deletion Diagnostics

MLR. The ‘‘data’” were subjected to stepwise (single
terms addition/deletion) MLR using the general linear mod-
elling (GLM) procedure in the SPLUS statistical program
(Version 3.1, Statistical Sciences, Inc.) (9).

The relationship between parameters and covariates us-
ing MLR can be described with equation (4).

n
Py = ano + D, grilxy) + € )

i=1

where g,; is a linear regression coefficient, o, is a constant,
€ is a normally distributed with zero mean and constant vari-
ance, and P,; is the predicted kth PK parameter in the jth
subject.
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Case Deletion Diagnostics. MLR is widely used to de-
termine which variables are important predictors, and to find
a reduced set of predictors. Thus, it is undesirable for the
final model to depend strongly on only a few observations
(individuals in this case). Conclusions drawn from the model
could be misleading if those individuals (observations) were
inconsistent with the bulk of the data. Measures of influence
are thus very important for model building. They determine
the influence an individual observation has on the fitted
model, and what would happen to various aspects of the
model if individuals (observations) were omitted. Cook’s
distance (C,) (11) is one of such measures. The Cook’s dis-
tance diagnostic was implemented with Splus (9) for each of
the predictors of CL obtained from MLR.

A reference value is often useful for determining which
values of C, are actually ‘‘large’’. Although C; does not have
an F distribution (12) it is often compared to the 50th per-
centile of a standard F distribution on z parameters (i.e. 3 in
this case) and n — z (i.e. 135, and n is the number of obser-
vations (individuals)) degrees of freedom, as a heuristic
means of determining observations for which it is unusually
large (13). This critical value is typically close to one, and
this amounts to a cutoff of one for C; which was used in this
analysis.

GAM

The model in equation (4) for MLR makes a strong as-
sumption about the linear dependence of P, on each of the
predictors, x;. This may not always be the case. For many
types of data a change in the mean of P is accompanied by a
change in its variance. The GAM (14) approach presents a
more general perspective for the handling of covariates in the
multiple regression setting. This is a group of models that is
as tractable as the linear model, but does not force the data
into unnatural scales. Separate functions are introduced to
allow for nonlinearity and heterogeneous variances. This is
closer to a reparameterization of the model than to a reex-
pression of the response.

The use of the GAM approach for covariate selection in
pharmacokinetics was recently described by Mandema et al.
(6). With the GAM approach the function g ,(x;;) in equation
(4) can be represented by any function, and smoothing spline
functions were used in this study for their modelling flexi-
bility. The GAM approach provides for straightforward in-
terpretation of results by assuming an additive structure. It
also allows the contributions of various covariates to be dis-
played graphically, making comparison with results obtained
with straight forward MLR possible.

The building of the general additive model is done using
the stepwise procedure described for MLR above. Each co-
variate is allowed to enter the model in any of several func-
tional representations. The Akaike information criterion
(AIC) is used as the model selection criterion (15). Single
terms addition/deletion are carried out in a current model
which reduces the AIC selection criterion the most. It stops
when it hits a specified model boundary, or when no step will
decrease the criterion any further.

TBM

TBM is an exploratory technique for uncovering struc-
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ture in data, and assessing the adequacy of linear models
(16). The TBM approach is especially effective when there
are significant interactions among predictors (16).

Consider splitting the data into two parts, along any of
the X predictors, so that the resulting groups are most ho-
mogeneous with respect to the response. Specifically, all
splitting points are examined along all predictors, and the
one that produces the smallest total within-group variance in
the two groups is chosen. The split at a node is that split on
the X variables which most successfully separates the high
response values from the low ones (16). The data are then
split into two parts, and the process is repeated on each part.
At each stage all split points along all predictors are consid-
ered, so that the predictor can be used for splitting more than
once. The splitting process can be terminated when no fur-
ther splits can be found to significantly improve the homo-
geneity of the subgroups. Only the ranks of numeric predic-
tors are used to define splits and not their values. This aspect
of TBM for numeric predictors renders them invariant under
monotone transformations of X. TBM as implemented in
SPLUS (9) was used for the construction of the regression
tree for CL.

Step 5: Population Model Building Using NONMEM

For each NONMEM analysis the improvement in fit
obtained upon addition of a factor into the regression model
was assessed by the change in the NONMEM objective
function. Minimization of the NONMEM objective func-
tion, equal to twice the negative log-likelihood of the data
(—2logL,,..), is equivalent to maximizing the probability
(likelihood) of the data. Thus, monitoring changes in the
objective function serves as a statistical test showing which
parameter values render the data most probable. The differ-
ence in the objective function values obtained for the full
versus the restricted models is approximately chi-square dis-
tributed with degrees of freedom equal to the number of
parameters which are set equal to a fixed value in the re-
stricted model. This approach was used to estimate the sig-
nificance of various patient characteristics, usually referred
to as fixed effects or covariates, as predictors of pharmaco-
kinetic parameters. Similarly, the appropriate statistical
model was determined and the magnitude of inter- and in-
traindividual variability estimated (17).

The goodness of fit of each NONMEM analysis was
also assessed by the examination of scatterplots of predicted
versus measured cefepime concentrations and weighted re-
siduals, the percent relative standard error of the mean (i.e.,
%RSE = (standard error estimate/parameter estimate) *
100%), and changes in the estimates of interindividual and
residual intraindividual variability resulting from the addi-
tion or deletion of a parameter.

The NONMEM analysis was continued by testing co-
variates selected from Step 3 above, one at a time, in the
regression model. During the process, a difference in the
objective function value of (3.8 = X? critical value for 1
degree of freedom at p = 0.05) was considered statistically
significant. The full model was then constructed to include
all covariates which demonstrated a significant effect on CL,
V1, Q and V2.

Testing for the significance of each covariate, weight
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(either as a linear or nonlinear predictor) was found to be a
predictor of V1, V2 and Q with a loglikelihood difference
(LLD) of =—20.87 between the full and reduced models.
Sex was not a predictor of either V1 or V2. The significance
of this covariate was not tested for Q because it was not
selected by MLR or GAM. Age was found to be a predictor
of V2 (LLD = —20.84) and not Q. Also, age was not a
predictor of CL (LLD = 0 when compared with the base
model of CL modeled without regard to any covariate),
while CRCL modeled nonlinearly was found to be a signifi-
cant predictor of CL (LLD = —327.09 when compared to
the base model).

The GAM and TBM findings coupled with the non-
normality in the distribution of CL observed from Step 3 led
to testing the appropriateness of using the MIX subroutine in
NONMEM (1) for fitting the data. The MIX subroutine al-
lows mixture modeling to be carried out within the context of
mixed effects modeling. A mixture model assumes that the
population consists of two or more subpopulations, each ap-
proximating a normal distribution and each subpopulation
may have its own model. With two subpopulations it might
be assumed that some fraction of the population has one set
of typical values of pharmacokinetic parameters, and the
remaining fraction has another set of typical values. The
mixing fraction (8) and both sets of typical values can be
estimated, and NONMEM computes an estimate of the sub-
population to which an individual belongs (1). Thus, the es-
timation of CL for two subpopulations was tested. The basic
model for CL with the mixture model (two subpopulations)
was superior to basic model assuming only one population
(LLD = -616.52). It was also better than the model in
which CRCL was modeled as a nonlinear predictor of CL.
Different models for CRCL as predictor of CL: (1) same
intercept with different slopes, (2) same slope with different
intercepts, and (3) different intercepts with different slopes
were tested with the mixture model. The modified Shapiro-
Wilk test showed that all other parameters approximated
normal distributions.

To arrive at the minimum subset of covariates, the full
model for each structural model parameter was tested
against corresponding restricted models. A full model was
developed for V2, while other parameters had only one co-
variate in their models. The models were:

CL, (L/h) = ©; + 63 * CRCL )
CL, (L/h) = 6,*6, + 6;*6, * CRCL (6)
VI (L) = 65 + WT¥’ @)
Q (L/h) = B9 + 64*WT ®)
V2 (L) = 019 + WT**O; + AGE*0, )

where CRCL is L/h, WT is in Kg, and AGE is in years. To
partially compensate for the multiple comparisons, p < 0.005
was used. Thus, a change in the objective function value of
7.8 was necessary to show statistical significance between
each proposed restricted model and the full model when the
two models differed by 1 parameter. The final regression
models included the fewest number of covariates in each
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parameter resulting in a model which was not significantly
different from the full models.

Step 6a: Evaluation of Final Parameter Estimates

Numerical methods used to fit experimental data
should, ideally, give estimates of both the primary and sec-
ondary parameters that are unbiased and of defined preci-
sion. In practice bias should be absent as long as the error in
the data is of known distribution and variance. The precise-
ness of the primary parameters can be estimated from the
final fit of the multiexponential function to the data, but they
are of doubtful validity if the model is severely nonlinear
(18). The preciseness of the secondary parameters (in this
case variability) are likely to be even less reliable. Conse-
quently, the results of statistical tests carried out with pre-
ciseness estimated from the final fit could easily be mislead-
ing. The first order method in NONMEM vyield estimates of
parameters which are sometimes biased. A possible way of
reducing bias in parameter estimates and of calculating re-
alistic variances for them is to subject the data to the jack-
knife technique (19,20). The technique requires little by way
of assumption, or analysis.

Jackknifing for the homogeneous data involves one-at-
a-time omission. However, the block-at-a-time (s-at-a-time)
omission has been shown to have a similar efficiency to the
one-at-a-time omission (21). A 10%-at-a-time omission was
applied to the data set and reanalyzed with NONMEM. A
naive Student t approximation for the standardized jackknife
estimator (22) was used. The magnitude of bias reduction is
the reciprocal of the total number of blocks omitted.

Step 6b: Performance of Mixture Modeling Within the
Context of the Mixed Effects Model

Since mixture modeling was done within the frame work
of mixed effects modeling, it was of interest to assess the
performance of this approach. In doing this, parameter esti-
mates obtained using the standard two stage (STS) approach
were used as standards. Each parameter estimate was then
transformed so that it could be expressed as a percentage of
the corresponding STS value (%E,,,, p = 1,...,138) thus:

%E ;) = [(Estnonmem — Estsrs)/Estgrs] * 100 (10)

where Estyonmem and Estgrg are NONMEM and STS es-
timates of parameters, respectively. The dimensionless
quantity (%Ep) enabled us to evaluate the performance of
the mixture modeling approach for parameter estimation
within the mixed effects model setting. The mean of %E
values for each parameter estimate obtained from 138 sub-
jects provided a measure of accuracy with which the param-
eter had been estimated using NONMEM. Precision was
computed using mean absolute error thus:

ZeMAE, = [1/N Z(|Estyonmem

— Estgrg))/Estgrs] * 100 (1)
where %MAE; is the percent mean absolute error in the
estimation of a parameter, P.
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RESULTS

Distributions of Covariates, Parameter Estimates,
and Correlations

The distributions of the various subject (patient) demo-
graphic variables are shown in Fig. 1, and the relationships
between covariates are shown in the pairs plot in Fig. 2.
There appears to be a slight bimodality in the distribution of
CRCL. The non-normality in the distribution of CRCL was
confirmed by formal testing. Although weight was signifi-
cantly correlated with age (p < .0001) the correlation coef-
ficient was 0.34. Creatinine clearance was similarly corre-
lated with age (p < .0007), and the correlation coefficient
was 0.29. Although these correlations were significant, the
low values of the correlation coefficients did not allow a
reduction in the dimensionality of the covariate vector to be
achieved a priori.

A density plot of the empiric Bayes estimates of CL
revealed a non-normality in the distribution of the estimates
of this parameter (Fig. 3a) which may be due in part to non-
normality of CRCL. However, density plots of V1, Q, and
V2 did not reveal any significant departure from normality
(Fig. 3 (b—-d)), and this was confirmed by formal testing.

Exploratory Data Analysis

Exploratory analysis of the data with MLR and GAM
was performed using empiric Bayes estimates of CL, V1, Q,
and V2 against CRCL, age, weight, and sex as predictors of
the parameters. The results of the MLR and GAM analyses
are presented in detail below for CL, while those for Q, V1,
and V2 are mentioned briefly.
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MLR with Case Deleticn Diagnostics

Fig. 4 (a & b) shows the relationship between CRCL,
age and CL as obtained with MLR. However, CRCL as a
linear predictor of CL was not satisfactory as observed from
the partial residual plot (Fig. 4a). Subjects with CRCL less
than 60 ml/min were over predicted. The Cook’s distance
diagnostic did not reveal any high leverage observations (C;
< 1) in the ““data’’. The highest C; value was 0.12 for CRCL
and 0.125 for age.

Weight and sex were identified as predictors of V1,
while age and weight were identified as predictors of Q (Ta-
ble I). On the other hand, CRCL, weight, sex, and sex in-
teracting with weight were identified as predictors of V2 by
this GLM procedure (Table I).

GAM

Smoothing spline scatterplot smoother was used in the
GAM approach for fitting. Setting interior knots at 33rd and
66th quantiles for the modelling of CL did not yield a result
significantly different from using only one interior knot set at
the median (the default setting). Consequently, the default
setting was used for all models tested with the GAM ap-
proach. (Note that we were interested in the selection of
covariates and the shapes of the fits only.) Like the MLR
approach, CRCL and age were identified as predictors of CL
using GAM (Fig. 4 (¢ & d)). GAM also identified a nonlinear
relationship between these covariates and CL. It is worth
noting from Fig. 4c that most subjects with low CRCL were
poorly predicted with the suggested nonlinear relationship
between CL and CRCL.

As with the MLR approach, GAM selected weight and
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sex as predictors of V1, while weight and age were selected
as predictors of Q. Moreover, the GAM approach identified
weight and age as nonlinear predictors of V2, while sex was
a linear predictor (Table I).

TBM

The result of TBM which was carried out only on CL
showed that CRCL was the most significant predictor of CL.
The first node for splitting the data was based on CRCL (Fig.
5a). The histogram of the splits for CL and CRCL shows the
splits for CL almost matching those of CRCL (Fig. 5 (b & ¢)).
Two levels of response apparently associated with two
CRCL subgroups is noticeable. No interactions were re-
vealed.

Population Model Building

The NONMEM analysis carried out on the variables
selected by GAM showed that the mixture model with CL
modelled in two subpopulations was superior to modelling it
without regard to the existence of two subpopulations in the
data set. Although age was identified as a predictor of CL
from the exploratory modelling methods, NONMEM did not
identify age as a predictor of CL. Modelling CL with differ-
ent intercepts and slopes with CRCL entering the model

linearly (using the mixture model) was superior (LLD =
—616.52 when compared with CL. modeled without regard to
any covariate) to other models tested for CL (assuming un-
imodality in CL distribution). Some examples of the ‘‘other’’
CL models were CRCL modeled as a nonlinear predictor of
CL or a linear predictor of CL with a breakpoint at 50 ml/
min. The LLD for these models when compared to the basic
model (i.e. CL modeled without regard to any covariate)
were —327.09 (for CRCL as nonlinear predictor of CL) and
—300.02 (for CRCL modeled with a breakpoint at 50 ml/
min). Thus, equations (5) and (6) describe the final model for
CL. The distribution of individuals in the two apparent sub-
populations are shown in Fig. 6.

Only weight was identified by NONMEM as a signifi-
cant predictor of V1 and Q (Table I). Modelling Q linearly as
a function of weight without an intercept yielded Q estimates
which were more precise, and this was used as the final
model for Q. On the other hand, V2 was similarly predicted
by either age or weight. Although age and weight were in-
cluded in the full model for V2, the addition of age to weight
in the model did not significantly improve the goodness-of-
fit. Thus in the final model, V2 was modelled as a nonlinear
function of weight without the intercept which was infinites-
imally small. Removing the intercept in the model for V2 did
not alter the objective function.

Using the parameter estimates from equations (5) and
(6), the equations for the estimation of CL are of the forms

CL,(L/h) = 1.0(20.0%) + 0.25(44.0%) * CRCL for the
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group of individuals with a shallow slope of the CL regres-

sion model, and

CLy(L/h) = 1.020.0%) * 0.27(35.0%) + 0.25(44.0%) *
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Fig. 3. Density plots showing the structure of empiric Bayesian estimates for: (a) CL,
(b) V1, (¢) Q, and (d) V2. Note that the extension of density plots beyond zero in the
negative direction is a consequence of the smoothing function used in producing the
plot; no parameter value was negative. The degree of smoothness of the density plots
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slope of the CL regression model. The numbers in parenthe-

ses are percent relative standard errors. In addition, the

4.43(45.0%) * CRCL for the group of individuals with a steep  rameters are:
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Fig. 4. MLR and GAM analyses results: scatterplots of partial residuais of CL (L/h)
vs (a) CRCL (ml/min), and (b) age (yr) from MLR analysis; and CL (L/h) vs (c) CRCL
(ml/min), and (d) age (yr) for GAM analysis. The ordinate represents the partial
residuals, i.e, the individual empiric Bayesian estimates of CL. minus the parameter
estimate based on other subject covariates. The ordinate label is the expression used
to specify the contribution of the covariate to the model formula in the SPLUS
language. The same scale is used for the ordinate in both plots so that the relative
importance of the covariates can be compared.

equations for the estimation of other structural model pa-
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Table I. Covariate Selection by Regression Method

Regression Method

Par. MLR GAM TBM NONMEM
CL ~CRCL + AGE ~s(CRCL) + s(AGE) ~CRCL + WT + AGE ~CRCL (MIX)*
V1 ~WT + SEX ~WT + SEX - ~WT (nl)®

Q ~WT + AGE ~WT + AGE - ~WT

V2 ~CRCL + WT + ~s(WT + s(AGE) + - ~WT (nl)®

SEX + WT:SEX SEX

4 MIX—NONMEM mixture model.
® nl—entered the NONMEM model nonlinearly.

V1 (L) = 3.81 (11.1%) + WTO4 0%

Q (L/h) = 0.08 (12.4%)*WT
\%) (L) — WT0‘43 (240%).

The NONMEM estimate of the fraction of individuals with
shallow slope for the CL regression model (subpopulation I)
was 0.16 (25.0%, percent relative standard error (%RSE)).
The unexplained interindividual differences in plasma
concentration profile of cefepime could be described with
the exponential error model (Eq. 1). The interindividual un-
explained variability was found for CL to be 42.3 and 25.1%

for subpopulations I (shallow slope group of the CL regres-
sion model) and II (steep slope group of the CL regression
model), respectively. The unexplained interindividual vari-
ability in V1, V2, and Q were found to be 27.6, 28.0, 29.6%,
respectively (Table II). The residual intrasubject variability
was 14.5% at a concentration of 5 ug/ml and less than 11%
when the concentration was greater than or equal to 30
ug/ml.

Evaluation of Final Parameter Estimates

Most of the JKK estimators for regression coefficients
and variability were similar to the NONMEM estimates (Ta-

@
CRCL<44 8
1
c
1.243
CRCU<59 5 CRCLE1144
AGE£44.5 p
4.900 3.922 4.631 7.900 8.517
5.827 6.740 8.083
CR CR 1.1
6.033
5.260 6.117 6.837 7.413
® CL © CRCL @ AGE © WT
» s
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| ———— S L | E——
——— 1 =— S T N—
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Fig. 5. (a) A tree-based model for CL. The top panel displays the labeled dendrogram. The
lower panel displays a side-by-side histogram for: (b) CL, (¢) CRCL CRCL (ml/min), (d) age
(yr), and (¢) WT (kg). The left-side histogram summarizes the observations following of the

left split, and similarly for the right.
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Fig. 6. The distribution of individuals into two subpopulations by
NONMEM. (...... )—a majority of individuals with shallow slope of
for the CL regression model. ( )—-a majority of individuals with
steep slope of for the CL regression model. The densities were
rescaled to reflect the proportion of individuals in each subgroup.
Note that the extension of density plots beyond zero in the negative
direction is due to smoothing function used in producing the plot; no
CL value was negative. The degree of smoothness of the density
plots was determined by the width which was set to two times the
interquartile distance.

bles III). In some cases, these were more precise than the
NONMEM estimates.

Performance of Mixture Modeling

Relative to the STS approach the estimation of CL and
Vss using MIX subroutine within NONMEM was associated
with minimal to no ‘‘deviation’’, and good precision. The
deviations associated with the estimation of CL and Vss
were 0.09 and 10.09%, respectively. The %MAE in the esti-
mation of these parameters were 0.19% (CL) and 18.06%
(Vss).

DISCUSSION

The concepts of the exploratory data analysis (EDA)
technique have been well defined for over a decade (23), but
the application of EDA has been slow to gain acceptance in
many fields of science. EDA is a powerful technique for
interpreting data. The visualization of the data provided by

Table II. Random Effect Parameters

Parameter Intersubject Variability 95% CI
CL, 42.3% 23.5-55.0%
CL, 25.1% 19.1-30.0%
Vi 27.6% 23.2-31.4%
Q 28.0% 12.2-40.0%
V2 29.6% 19.3-33.5%

Coi® (ng/ml) Residual Intrasubject Variability
4 5 14.5%
o 30 10.8%

@ C is the ith concentration predicted by the model for the jth
individual.
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the graphical techniques presented above has the potential to
speed the analysis of PPK data.

The EDA approaches used in the analysis of this data
set produced relatively consistent results. The non-normal-
ity in the distribution of CL and CRCL were confirmed by
subsequent EDA approaches. This non-normality in CL dis-
tribution showed up as model inadequacy in the MLR results
of CRCL as a linear predictor of CL (Fig. 4a). Case deletion
diagnostics were used with MLR because of the ease with
which this can be implemented within SPLUS. The GLM
object returned by SPLUS for MLR fit was used for this
purpose, and there were no high leverage points in the
“‘data’ set. Also, subjects with low CRCL values were
poorly predicted with the GAM model. Although the MLR
and GAM analysis selected CRCL and age as predictors of
CL, ANOVA carried out on the residuals from the analyses
indicated that age was not a significant predictor (MLR: p <
0.115, GAM: p < 0.06) of this parameter. This is amplified in
Fig. 4b and 4d.

Based on the GAM analysis, there appeared to be a
nonlinear relationship between cefepime CL and CRCL. The
nonlinearity suggested by GAM in the relationship between
CL and age was not significant. The relationships between
the partial residuals and age was flat for the majority of the
data. Only a few observations appeared to skew the values at
the extremes of age. Smoothing splines are sensitive to out-
lying observations along the ordinate.

The MLR and GAM analysis suggested sex and weight
as predictors of V1. ANOVA carried out on the residuals
suggested that sex was not a significant predictor of V1. The
GAM analysis suggested nonlinearity in the relationship be-
tween V1 and weight. Age and weight were shown to be
significant linear predictors of Q by both modelling proce-
dures. Nonlinearity in the relationship between age, weight
and V2 was suggested by GAM in addition to sex. MLR also
showed these factors to be predictors of V2 with interaction
occurring between weight and sex.

The apparent existence of two subpopulations was con-
firmed with TBM (Fig. 6). The histogram of TBM at the first
node of the tree shows the dichotomy in CL and CRCL
values, with the latter being the most significant predictor of
the former (Fig. 6 (a & b)). The first node for splitting of data
occurred at 44.8 ml/min (CRCL) were the CL values in the
right and left splits are most different; suggesting two levels
of response by two different subpopulations. TBM was a
powerful tool for revealing structure in the data, and con-
firmed the inadequacy of modeling CRCL as a linear predic-
tor of CL.

The inadequacy of modeling CRCL as a nonlinear pre-
dictor of CL using GAM, coupled with the results of TBM
and taking into consideration the non-normality in the dis-
tribution of CL estimates led to the use of the NONMEM
MIX subroutine for testing models for CL. The results of
models tested using mixture modeling were compared with
the results obtained with CL. models assuming unimodal dis-
tribution of CL estimates. Fits obtained with the mixture
model were significantly better than any CL model without
the MIX subroutine. Modelling CRCL as a linear predictor
of CL (equations (5 & 6)) with different slopes and intercept
was better than other models tested. The use of mixture
modelling to account for the apparent existence of two sub-
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Table III. Comparison of Normal Theory Parameter and Variance Parameter Estimates with Jackknife Estimators

Normal theory Jackknife®
Parameter Estimate SE %RSE Estimate SE %JKK SE
0, 0.990 0.200 20.200 0.780 0.075 9.615
0, 0.270 0.090 33.330 0.910 0.335 36.813
05 0.250 0.110 44.000 0.260 0.055 21.150
0, 4.430 2.000 45.460 3.513 0.347 9.878
0 3.810 0.420 11.024 3.830 0.073 1.906
0 0.080 0.010 12.500 0.080 0.002 2.500
0, 0.430 0.010 2.326 0.430 0.006 1.395
0g 0.160 0.040 25.000 0.190 0.020 10.526
@, 0.180 0.060 33.333 0.190 0.025 13.158
o, 0.060 0.010 16.667 0.060 0.004 6.667
% 0.080 0.010 12.500 0.080 0.002 2.500
Wy 0.080 0.020 25.000 0.080 0.003 3.750
g 0.090 0.040 44.444 0.080 0.007 8.750
€ 0.010 0.001 10.000 0.010 0.0003 3.000
€, 0.050 0.010 20.000 0.050 0.002 4.000

2 10% of subjects removed/run. 6, is the intercept for the regression of CRCL as a predictor of CL in subpopulation I. 8, is the intercept
scaling factor for the regrssion of CL on CRCL in subpopulation II. 85 is the regression coefficient for CRCL as a predictor of CL in
subpopulation I. 8, is the regression coefficient scaling factor for CRCL as predictor of CL in subpopulation II. 65 is the intercept for the
regression of V1 on WT. 6 is the regression coefficient of WT as a predictor of Q. 8, is the regression coefficient of WT as a nonlinear
predictor of V1 and V2. 65 is the fraction of individuals partitioned into subpopulation I. w, is variance in CL,. w, is variance in CL,. w;
is variance in V1. w, is variance in Q. o is variance in V2. ¢, is the constant coefficient of variation error variance, and e, is the additive

€rror variance.

populations of individuals in the sample provided a better fit
for the data than using a nonlinear model for CRCL (in
NONMEM) as suggested by GAM.

As suggested by GAM, NONMEM selected weight as a
nonlinear predictor of V1. Gender had no influence in the
estimation of this parameter by NONMEM (Table I). Also, Q
was modelled as a function of body size (equation (8)).

The nonlinear relationship between age, weight and V2
suggested by GAM was confirmed in the NONMEM analy-
sis during the model building phase. The final model for V2
included only weight.

The modelling of CL as a function of CRCL led to a
significant decrease in the objective function (LLD =
-616.52), with a decrease in variability of 32.8% and 3.5%
for subpopulations I (equation (5)) and II (equation (6)), re-
spectively. The relatively lower precision associated with the
estimation CL for subpopulation I is a consequence of a
smaller proportion of individuals (twenty two) in this sub-
group as compared to 116 individuals in subpopulation II.
The partitioning of some individuals in subpopulation II into
subpopulation I and vice versa was due to the fact that the
tail of one distribution overlapped into the other (Fig. 6).

Significant improvements were also observed in the
goodness-of-fit when V1, Q, and V2 were modelled as func-
tions of weight. The intersubject variability in V1, Q, and V2
decreased by 4.2, 17.7, and 5.6%, respectively.

The finding that CRCL is a linear predictor of CL is in
agreement with earlier reports by Barbhaiya et al. (24,25).
The authors (24) also reported that gender was not a predic-
tor of CL or any of the other pharmacokinetic parameters,
and this was confirmed in this analysis. Barbhaiya et al. (24)
observed statistically significant age-related effects for CL
and volume of distribution at steady state, but concluded the
magnitudes of these changes in the pharmacokinetics of

cefepime was not significant enough to recommend dosage
adjustment in the elderly. Our findings that age was not a
predictor of CL or any of the volume terms supports the
proposition that dosage adjustment for this drug should be
based on renal function (25). In a recently published review
article on cefepime it was also recommended that dosage
adjustment should be based on renal function (26)

The similarity of the final NONMEM parameter esti-
mates to JKK estimators indicated that the NONMEM es-
timates were relatively unbiased and precise. It is worth not-
ing that in using the JKK technique, the PPK estimates were
evaluated and not the population model. Also, NONMEM
with the MIX subroutine produced accurate and precise pa-
rameter estimates relative to the STS estimates in a situation
where the subjects were sampled intensively.

A rich data set was used for this analysis with an aver-
age of 15 data points per individual. Thus, the shrinking of
empirical Bayes parameter estimates towards the population
mean (which would have occurred with sparse sampling) was
not a problem.

Although MLR and GAM may provide a selection of
covariates which could be included in the NONMEM model
for explaining variability, testing the contribution of these
covariates by ANOVA (say, p < 0.05) may provide addi-
tional information about the significance of a covariate. If a
covariate does not achieve significance at p < 0.05, it ap-
pears from these results that the covariate may not be se-
lected by NONMEM.

The nature of the distribution of the empiric Bayes es-
timates for CL, model misspecification revealed in MLR and
GAM analyses, and the results of the TBM technique were
very useful in the regression model building process. EDA is
an important first step for making a selection of essential
covariates. Understanding the structure of a given data set is
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of utmost importance in carrying out an informative analysis.
EDA revealed patterns in the data that helped in the expla-
nation of intersubject variability. Thus, understanding the
structure of the data should guide the analysis carried out
with NONMEM. The use of mixture modelling with NON-
MEM led to a better characterization of the population that
was studied without violating the assumptions of normal the-
ory.

The findings suggest that using informative graphical
and statistical techniques enhance the understanding of the
data structure and lead to an efficient analysis of the data.
Although not universal, the approaches described herein
have some level of general applicability.
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